skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Jiancheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The impact of electron injection, using 10 keV beam of a Scanning Electron Microscope, on minority carrier transport in Si-doped β-Ga2O3 was studied for temperatures ranging from room to 120°C. In-situ Electron Beam-Induced Current technique was employed to determine the diffusion length of minority holes as a function of temperature and duration of electron injection. The experiments revealed a pronounced elongation of hole diffusion length with increasing duration of injection. The activation energy, associated with the electron injection-induced elongation of the diffusion length, was determined at ∼ 74 meV and matches the previous independent studies. It was additionally discovered that an increase of the diffusion length in the regions affected by electron injection is accompanied by a simultaneous decrease of cathodoluminescence intensity. Both effects were attributed to increasing non-equilibrium hole lifetime in the valence band of β-Ga2O3 semiconductor. 
    more » « less
  2. null (Ed.)
    Abstract Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a polarization of ∼80%) and protons (with a polarization of ∼70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3) × 10 33 cm −2 · s −1 . Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC. The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies. This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China. 
    more » « less